Lab 6 (2 hours): Advanced Document Types

This lab consists of a series of independent examples that deal with different document
types. They don’t need to be completed in order. There will not be time to complete all
the exercises in this lab session. Please start with Parts I and II, then choose any other
exercises that are relevant to the documents that you will be working with back home.

The labs are:

Part 1 — Scanned Images and OCR text

Part Il — Adding scanned documents to your custom collection
Part Il — Web sites and web pages

Part IV — Word documents

Part V— PDF and PowerPoint documents

Part VI— CDS/ISIS databases

Part VII — Your custom collection

Part I — Scanned Images and OCR text

Here we build a small replica of Niupepa, the Maori Newspaper collection, using six
newspapers taken from three newspaper series. It allows full text searching and browsing
by title and date. When a newspaper is viewed, a preview image and its corresponding
plain text are presented side by side, with a goto page navigation feature at the top of the
page. The collection involves a mixture of plug-ins, classifiers, and format statements.
The bulk of the work is done by PagedlmgPlug, a plug-in designed precisely for the kind
of data we have in this example. For each document, an “item” file is prepared that
specifies a list of image files that constitute the document, tagged with their page number
and (optionally) accompanied by a text file containing the machine-readable version of
the image, which is used for full text searching. Four newspapers in our collection (three
from the series Te Whetu o Te Tau, one from Te Haeata) have text representations, and
two (from Te Waka o Te Iwi) have images only. Item files can also specify metadata. In
our example the newspaper series is recorded as ex.Title and its date of publication as
ex.Date. This metadata is extracted as part of the building process.

1. Start a new collection called Paged Images and fill out the fields with appropriate
information: it is a collection sourced from an excerpt of Niupepa documents; the
only metadata used is document title and date, and these are extracted from the “item’
files included in the source documents so no metadata set need be stipulated.

b

2. In the Gather panel, open the niupepa\sample_items folder in workshop_files and
drag the two subfolders into your collection on the right-hand side. A popup window
asks whether you want to add PagedImgPlug to the collection to process this file.
Click <Add Plugin>, because this plugin will be needed to process the item files.

3. Some of the files you have just dragged in are the newspaper images, others are text
files that contain the text extracted from these images. We want these to be processed

by PagedImgPlug, not ImagePlug or TEXTPIlug. Switch to the Design panel and
delete ImagePlug and TEXTPlug. While you are at it, you could tidy things up by
deleting all plugins from HTMLPlug to NULPIlug as well, since they will not be
used.

Open up the configuration window for PagedImgPlug by double-clicking on the
plugin. Switch on its screenview configuration option by checking the box. The
source images we use were scanned at high resolution and are large files for a
browser to download. The screenview option generates smaller screen-resolution
images of each page when the collection is built.

Now go to the Create panel, build the collection and preview the result. Search for
waka and view one of the titles listed (all three appear as Te Whetu o Te Tau). Browse
by titles a—z and view one of the Te Waka o Te Iwi titles.

This collection was built with Greenstone’s default settings. You can locate items of
interest, but the information is less clearly and attractively presented than in the full
Niupepa collection.

Grouping documents by series title and displaying dates within each group

6. Under titles a—z documents from the same series are repeated without any

8.

9.

distinguishing features such as date. It would be better to group them by series title
and display dates within each group. This can be accomplished using an
AZCompactList classifier rather than AZList, and tuning the VList format
statement.

In the Design panel, under the Browsing Classifiers section, delete the AZList
classifiers for ex.Source and ex. Title.

Now add AZCompactList for ex. Title and DateList for ex.Date.

Modify the format statement for VList (under Format Features). Find the part of the
default statement that says

{1£}{ [ex.Sourcel],
<i>([ex.Source])</i>}
and change it to
{1f}{[ex.Date],: [ex.Datel}

Click <Replace Format>. This has the effect of displaying the extracted date
information, if present.

10. Build and preview the collection.

Searching at page level

11.

12.

13.

14.

The newspaper documents are split into sections, one per page. For large documents,
it is useful to be able to search on sections rather than documents. This allows users to
more easily locate the relevant information in the document.

Go to the Search Indexes section of the Design panel. Remove the ex.Source index.
Select the text index in the Assigned Indexes box, and change the Index Name to
“whole newspapers”. Click <Replace Index>. Create a new index: set the Index
Name to “newspaper pages”, keep text selected in Build index on, and change At
the level to section. Click <Add Index>. Click <Set Default Index> on the right
hand side to make the ‘pages’ index the default.

Build and preview the collection. Compare searching in the “whole newspapers”
index compared to the “newspaper pages” index. A useful search term for this
collection is “aroha”.

You will notice that when searching for individual pages, the newspaper image is
displayed in the search results. As these images are very large, this is not very useful.
To remove this, edit the format statement for VList (under Format Features), and
remove the second line:

<td valign=top>[ex.srclink] {Or}{[ex.thumbicon],
[ex.srcicon]}[ex./srclink]</td>

Preview the collection—the search results should be back to normal.

Displaying scanned images

15.

16.

When you reach a newspaper, only its associated text is displayed. When either of the
Te Waka o Te Iwi newspapers is accessed, the document view presents the message
This document has no text. No scanned image information (screen-view resolution or
otherwise) is shown, even though it has been computed and stored with the document.
This can be fixed by a format statement that modifies the default behaviour for
DocumentText.

In the Format Features section of the Design panel, select the DocumentText
format statement. The default HTML format string displays the document’s plain
text. For documents which had no text, PagedImgPlug set their text to “This
document has no text”.

Insert the following text after the <tr> and before the <td>[Text]</td>:

<td valign=top>[srclink] [screenicon] [/srclink]</td>

and click <Replace Format>. The resulting format statement will look like:

17.

<center><table width= pagewidth ><tr>
<td valign=top>[srclink] [screenicon] [/srclink]</td>
<td> [Text] </td></tr></table></centers>

(This format statement can be copied and pasted from the file
workshop_files\niupepa\doc _tweak.txt).

Including [screenicon] has the effect of embedding the screen-sized image
generated by switching the screenview option on in PagedImgPlug. It is
hyperlinked to the original image by the construct [srclink]..[/srclink].

Switch to the Create panel and preview the revised collection.

In the collection you have just built, newspapers are grouped by series title, and dates
are supplied alongside each one to distinguish it from others in the same series. Users
can browse chronologically by date, and when a newspaper page is viewed a preview
image is shown on the left that displays the original high-resolution version when
clicked, accompanied on the right by the plain-text version of that newspaper (if
available).

Adding another newspaper to the collection

18.

19.

20.

21.

Another newspaper has been scanned and OCRed, but has no item file. We will add
this newspaper into the collection, and create an item file for it.

Go back to the Gather panel. Add the folder workshop _files\niupepa\new _paper\12
to your collection.

A series of popups ask you about adding plugins to the collection to process the text
and image files. Remember that ImagePlug and TextPlug were removed from the
collection as we wanted these files to be processed by PagedImgPlug. Click <Don’t
Add Plugin> for each popup.

You may notice that for text files, GLI suggests ProCitePlug as the plugin to add. If
you open up the Select plugin to add drop down list, you can see that TEXTPlug is
also suggested. Both these plugins process files with extension .txt.

Inside the 12 folder you can see that there are 4 images and 4 text files.

Create an item file for the collection. Have a look at an existing item file to see the
format. Start up NotePad (Start—>Programs—> Accessories=>NotePad) to open a new
document. Add some metadata. The Title for this newspaper is “Te Haeata 1859-
1862”. The Date is “18610902”. (Greenstone’s date format is yyyymmdd.) Metadata
must be added in the form:

<Metadata name>Metadata value

22. For each page, add a line in the file in the following format:

pagenum:imagefile:textfile::
For example, the first page entry would look like

l:images/12 3 6 l.gif:text/12 3 6 1l.txt::

Note that if there is no text file, you can leave that space blank.

23. Save the file in My Documents, using Filename /2 3 6.item, and Save as type A/l

files. (Don’t save as type .txt as this will save the file as 123 6.item.txt.) Back in the

Gather panel of GLI, locate the new file in the Workspace tree (Home Folder=>My
Documents), and drag it into the collection, adding it to the 12 folder.

24. Build the collection and preview. Check that your new document has been added.

Advanced customization (Optional)

1.

Make each bookshelf node in the Title classifier show how many entries it contains.
In the Format Features section of the Design panel, select the Title classifier from
the Choose Feature drop down list (CL1 AZCompactList —metadata ex.Title), and
VList from the Affected Component list. Append the following:

{If}{[numleafdocs],<td><i>([numleafdocs])</i></td>}

Click <Add Format>, switch to the Create panel, and click <Preview> (no need to
rebuild).

This revised format statement has the effect of specifying in brackets how many items
are contained within a bookshelf. It works by exploiting the fact that only bookshelf
icons define [numleafdocs] metadata.

By modifying CL1VList instead of VList, the change will only apply to the first
classifier (Titles).

Search results, at the page level, only show the Title of the page (the page number),
not the Title of the paper. Modify the format statement to show the paper title as well
as the page number. In the Format Features section of the Design panel, select
Search in Choose Feature, and VList in Affected Component.

The extracted Title for the current section is specified as [ex.Title] while the Title for
the parent section is [parent:ex.Title]. Since the same SearchVList format statement
is used when searching both whole newspapers and newspaper pages, we need to
make sure it works in both cases.

Set the format statement to the following:

<td valign=top>[link] [icon][/link]</td>

<td valign=top>

{If}{[parent:ex.Title], [parent:ex.Title]: }[ex.Title]

<i> ({Or}{ [parent:ex.Date], [ex.Date] })</i></td>

(The format statement can be copied and pasted from the file
workshop_files\niupepa\search_tweak.txt).

The first line links to the document. The third line displays the parent Title if there is
one, then the Title of the current page or document. The fourth line displays either the
parent Date (in the case of pages) or the Date (in the case of documents), in italics
(<i>..</1i>).

3. Change the document display to show a link to hide/show the text. Modify the
DocumentText format statement to look like the following:

<center><table width=_pagewidth ><tr>

<td valign=top>[srclink] [screenicon] [/srclink]</td>

<td valign=top>

{1£}{ cgiargshowtext |,

Hide
text
 [Text],

Show
text}

</td></tr></table></centers

(The format statement can be copied and pasted from the file
workshop_files\niupepa\doc_switch.txt).

This displays the screen icon linked to the full size version as before, with a “show
text” link, which when clicked will display the Text of the page.

Part II — Your custom collection

Scan and add your print documents to your own collection. You will need to create an
item file for each document and use PagedImgPlug to process the item files. There is no
OCR software installed in the lab. You can either add the documents with images only, or
create some text files manually that contain a small part of the contents of the documents.

Part II1 — Web sites and web pages

This exercise uses the Download panel in the Librarian Interface to download files and
websites from the web. Then we modify the collection slightly to make Greenstone point
back to these documents instead of displaying the local copies. Finally, we look at how to
divide HTML documents into sections.

1.

Start a new collection called webtudor, and base it on New collection.

In a web browser, visit http://englishhistory.net, follow the link to Tudor England,

and click <enter>. You should be at the URL
http://englishhistory.net/tudor/contents.html

This is where we started the downloading process to obtain the files you have been
using for the tudor collection. You could do the same thing by copying this URL
from the web browser, pasting it into the Download panel, and clicking the
<Download> button. However, several megabytes will be downloaded, which might
strain your network resources—or your patience! For a faster exercise we focus on a
smaller section of the site.

In the Download panel, enter this URL
http://englishhistory.net/tudor/monarchs/edward6.html

into the Source URL box. There are several options that govern how the download
process proceeds. To copy the monarchs section of the website, select Only mirror
files below this URL. If you don’t do this, the downloading process will follow links
to other areas of the englishhistory.net website and grab those as well. Set Download
depth to Unlimited—we want to follow as many links as necessary to download all
the pages.

If your computer is behind a firewall or proxy server, you will need to edit the proxy
settings in the Librarian Interface. Open the Connection tab in File-> Preferences...
and switch on the Use proxy connection? checkbox. Enter the proxy server address
and port number in the Proxy Host and Proxy Port boxes. Click <OK>.

Now click <Download> on the Download panel. If you have set proxy information
in Preferences, a popup will ask for your user name and password. Once the
download has started, a progress bar appears in the lower half of the panel that reports
on how the downloading process is doing.

More detailed information can be obtained by clicking <View Log>. The process can
be paused and restarted as needed, or stopped altogether by clicking <Close>.
Downloading can be a lengthy process involving multiple sites, and so Greenstone
allows additional downloads to be queued up. When new URLSs are pasted into the
Source URL box and <Download> clicked, a new progress bar is appended to those
already present in the lower half of the panel. When the currently active download
item completes, the next is started automatically.

6.

Downloaded files are stored in a top-level folder called Downloaded Files that
appears on the left-hand side of the Gather panel. You may not need all the
downloaded files, and you choose which you want by dragging selected files from
this folder over into the collection area on the right-hand side, just like we have done
before when selecting data from the workshop_files folder. In this example we will
include everything that has been downloaded.

Select the englishhistory.net folder within Downloaded Files and drag it across into
the collection area.

Switch to the Create panel to build and preview the collection. It is smaller than the
previous collection because we included only the monarchs files. However, these
now represent the latest versions of the documents.

Pointing to documents on the web

8.

10.

11.

The files you have just downloaded were saved in a way that preserved the structure
of the original site. This allows any page’s original URL to be reconstructed from the
folder hierarchy.

In the Design panel, configure HTMLPlug. Switch on the file_is_url option. While
you are there, switch off the smart_block option so that the stray images are not
processed.

Setting the file_is_url option to HTMLPlug means that Greenstone sets an additional
piece of metadata for each document called URL, which gives its original URL.

It is important that the files gathered in the collection start with the web domain name
(englishhistory.net in this case). The conversion process will not work if you dragged
over a subfolder.

To make use of the new URL metadata, the icon link must be changed to serve up the
original URL rather than the copy stored in the digital library. In the Design panel,
select the Format Features section and edit the VList format statement by replacing
[link] [icon] [/1link]
with
[weblink] [webicon] [/weblink]

Click <Replace Format> to commit the change.

Switch to the Create panel and build and preview the collection. Note that the
document icons have changed. The collection behaves exactly as before, except that
when you click a document icon your web browser retrieves the original document
from the web. If you are working offline you will be unable to retrieve the document.

Extracting metadata

12. Many HTML documents contain metadata in <meta> tags in the <head> of the page.

Using WordPad, look at the file
C:\Program Files\Greenstone\collect\webtudor\import\englishhistory.net\tudor\monarchs\boleyn.html.
This page has page_topic, content and author metadata.

13. Configure HTMLPIlug to look for these metadata items. Switch on the

metadata_fields option, and set it to “Title,Author,Page topic,Content”.

14. Build the collection, then in the Enrich panel, look at the extracted for some of the

HTML files in englishhistory.net/tudor/monarchs. The new metadata can now be
used in classifiers or search indexes.

Section tagging for HTML documents

1.

In your digital library, take a look at the Greenstone demo collection. Browse to one
of the documents. This collection is based on HTML files, but they appear structured
in the collection. This is because these HTML files were tagged by hand into sections.

Using WordPad, open up one of the HTML files from the demo collection:
C:\Program Files\Greenstone\collect\demo\import\fb33fe\fb33fe.htm. You will see

some HTML comments which contain Section information for Greenstone. They look
like:

<l--
<Section>
<Description>
<Metadata name="Title">Farming snails 1: Learning about snails;
Building a pen; Food and shelter plants</Metadata>
</Description>
-—>

<!I--

</Section>

<Section>
<Description>
<Metadata name="Title">Dew and rain</Metadata>
</Description>

-——>

Where Greenstone encounters a <Section> tag in one of these comments, it will start
a new subsection of the document. This will be closed when a </section> tag is
encountered. Metadata can also be added for each section—in this case, Title
metadata has been added for each section. In the demo collection in the digital library,
find the Farming snails I document (through the tit/es a-z browser). Look at its table
of contents and compare it to the Section tags in the HTML document.

3. Add a new Section into this document. For example, add a new subsection into the
Introduction chapter. In WordPad, edit the html file, and add something like the
following just after the Section tag for the Introduction section:

<l--
<Section>

<Description>

<Metadata name="Title">Snails are good to eat. </Metadata>
</Description>

-—>

Then just before the next section tag (What do you need to start?), add the following:
<=
</Section>
-—>

The effect of these changes is to make a new subsection inside the /ntroduction
chapter.

4. Open the Greenstone demo collection in the Librarian Interface. In the Document
Plugins section of the Design panel, note that HTMLPlug has the description_tags

option set. This option is needed when Section tags are used in the source documents.

The metadata_fields option is not valid when description_tags is set—all metadata
is expected to be in the Section tags if they are being used.

5. Build and preview the collection. Look at the Farming snails I document again and
check that your new section has been added.

Part IV — Word documents

The standard way Greenstone processes Word documents is to convert them to HTML
format using a third-party program, wvWare. This sometimes doesn’t do a very good job
of conversion. If you are using Windows, you can take advantage of Windows native
scripting to do a better job of conversion. If the original document was hierarchically
structured using Word styles, these can be used to structure the resulting HTML. Word
document properties can also be extracted as metadata.

1. Inyour digital library, preview the reports collection. Look at the Word documents
and notice how they have no structure—they have been converted to flat documents.

Using Windows native scripting
2. In the Librarian Interface, open up the reports collection. Switch to the Design panel

and select the Document Plugins section on the left-hand side. Double click the
WordPlug plugin and switch on the windows_scripting option.

3. Build and preview the collection. Have a look at word03.doc and word06.doc. These
now appear with hierarchical structure. But these two are the only ones.

The default behaviour for WordPlug with windows_scripting is to section the
document based on “Heading 17, “Heading 2”, “Heading 3” styles. If you open up the
word03.doc or word06.doc documents in Word, you will see that the sections use
these Heading styles.

Note, to view style information in Word, you can select Format—> Styles and
Formatting from the menu, and a side bar will appear on the right hand side. Click
on a section heading and the formatting information will be displayed in this side bar.

4. Some of the documents do not use styles (e.g. word01.doc) and no structure can be
extracted from them. Some documents use user-defined styles. WordPlug can be
configured to use these styles instead of Heading 1, Heading 2 etc. Next we will
configure WordPlug to use the styles found in word05.doc.

Defining styles

5. Change the mode in the Librarian Interface to Library Systems Specialist (File>
Preferences>Mode). This is because you will need to use regular expressions to set
up the style options.

6. In the Document Plugins section of the Design panel, select WordPlug and click
<Configure Plugin>. Four types of header can be set which are:

= title header (titleHeaderl|titleHeader2|...)

= Jevell header (levellHeaderl|level1Header2]|...)
» level2 header (level2Headerl1|level2Header2]...)
= Jlevel3 header (level3Headerl|level3Header2]...)

These header options define which styles should be considered as title, level 1, level 2
and level 3 styles. Open up the word05.doc in Word (by double-clicking on it in the
Gather pane), and examine the title and section heading styles. You will see that
various user-defined header styles are set such as:

» PaperTitle: Title of the paper

» SammaryHeader (probably mistyped): Summary section
» ChapterTitle: Level 1 section heading

» SectionHeading: Level 2 section heading

= ReferenceHeading: Reference section

7.

Set the options in WordPlug as follows:

title header: PaperTitle

levell header: (SammaryHeader|ChapterTitle|ReferenceHeading|Refere
nce heading)

level2 header: SectionHeading

Build the collection and preview it. Look in particular at word05. You will see that
this document is now also hierarchically structured.

Removing pre-defined table of contents

8.

10.

If you look at word06.doc you will see that it now has two tables of contents. One is
generated by Greenstone based on the document’s styles, the other was already
defined in the Word document. WordPlug can be configured to remove predefined
tables of contents and tables of figures. The tables must be defined with Word styles
in order for this to work.

To remove the tables of contents and figures from word06.doc, switch on the
delete_toc option in WordPlug. Set the header styles as follows:

toc_header: (MsoTocl|MsoToc2|MsoToc3)
tof header: MsoTof

Once these are set, click <OK>.

Build and preview the collection. word06.doc should now only have one table of
contents.

Extracting document properties as metadata

11.

12.

13.

Word document properties can be extracted as metadata. By default, only the Title
will be extracted. Other properties can be extracted using the
extracted_word_metadata_fields option.

In the Enrich panel, look at the metadata that has been extracted for word05.doc and
word06.doc. Now open the documents in Word and look at what properties they have
set. (File --> Properties). They have Title, Author, Subject, and Keywords

properties. WordPlug can be configured to look for these properties and extract them.

In the Design panel, under Document Plugins, select WordPlug and click
<Configure Plugin>. Switch on the configuration option
extracted_word_metadata_fields. Set the value to

Title,Author<Creator>, Subject, Keywords<Subject>

This will make WordPlug try to extract Title, Author, Subject and Keywords
metadata. Title and Subject will be saved with the same name, while Author will be
saved as Creator metadata, and Keywords as Subject metadata.

14. Build the collection.
15. Look at the metadata for the two documents again in the Enrich panel. You should
now see these extra metadata items. This metadata can now be used in display or

browsing classifiers etc.

Part V — PDF and PowerPoint documents

Greenstone converts PDF and PowerPoint files to HTML using third-party software:
pdftohtml.pl and ppttohtml.pl. This lets users view these documents even if they don’t
have the PDF or PowerPoint software installed. Unfortunately, sometimes the formatting

of the resulting HTML files is not so good.

For these two document types, there is a new option for conversion: to a series of
page/slide images. For PDF documents, Greenstone uses the ImageMagick convert
program; for PowerPoint, it uses Windows native scripting (and therefore can only be
applied on a Windows machine). Behind the scenes, the files are converted to a series of

images with a corresponding item file, and processed using PagedImgPlug.

1. In the Librarian Interface, open up the reports collection you created previously. Add

some PowerPoint documents to it, from workshop-files—>sample_ppt.

2. Build and preview the collection, and view the documents. Remember from Lab 2
that pdf05-notext couldn’t be processed during building, because there was no
extracted text, and therefore doesn’t appear in the collection. Note that the other PDF
and PowerPoint documents appear as one long document, with no sections. The
images are missing from the PowerPoint display.

Tidying up the HTML format for PDF documents
3. In the Design panel, configure PDFPlug. Switch on the use_sections option.

Build and preview the collection. Note that all the PDF documents are now split into
a series of pages, and a goto page box is provided. The format is still a bit ugly
though.

4. In the Design panel, configure PDFPlug. Switch on the complex option. This will
make PDFPlug use Ghostscript to try and generate nicer HTML. Ghostscript needs to
be installed for this to work.

Build and preview the collection, and see how the format has changed to more
closely resemble the original. In particular, you can see that pdf01.pdf has retained its
columns in the HTML.

The PDF document with no text (pdf05-notext.pdf) now appears in the collection, but
has no contents. The PDF with weird characters (pdf06-weirdchars.pdf) still does not
display properly.

Using image format

5.

10.

If conversion to HTML doesn’t produce the result you like, both PDF and PowerPoint
documents can be converted to a series of images, one per page or slide. For PDF,
this requires ImageMagick to be installed, which is done as part of Greenstone
installation from CD-ROM. For PowerPoint, this requires the use of Windows native
scripting.

In the Design panel, configure PDFPlug. Set the convert_to option to one of the
image types, e.g. pagedimg jpg. Switch off the use_sections and complex options, as
they are not used with image conversion.

Configure PPTPlug. Switch on the windows_scripting option, and change the
convert_to type to one of the image types, e.g. pagedimg jpg.

Build the collection and preview. All PowerPoint documents have been divided into
sections, but only the extracted text is displayed. All PDF documents have been
processed and divided into sections, but each section displays “This document has no
text”. For the conversion to images for PDF documents, no text is extracted.

In order to view the documents properly, you will need to modify the format
statement. In the Format Features section on the Design panel, select the
DocumentText format statement. Replace

[Text]
with
{If}{[parent:FileFormat] eq PDF, [srcicon],

{If}{[parent:FileFormat] eq PPT, [srcicon], [Text]}}

Because the other documents in the collection do not use images, we only want to
show images for PDF and PowerPoint documents. FileFormat is an extracted
metadata item which shows the format of the source document. We use this to test
whether the documents are PDF/PPT or not.

Preview the collection from the Create panel. (There is no need to build it). Images
from the document are now displayed instead of the extracted text. Both pdf05-

notext.pdf and pdf06-weirdchars.pdf display nicely now. Make sure that the word
documents still display properly.

Using process_exp to control document processing (Optional, very advanced)

11.

12.

13.

14.

15.

16.

Processing all of the PDF documents using an image type may not give the best result
for your collection. The images will look nice, but as no text is extracted, searching
the full text will not be available for these documents. The best solution would be to
process most of the PDF files as HTML, and only use the image format where HTML
doesn’t work.

We achieve this by adding two PDFPlug plugins to the collection, with different
options. Currently, the GLI does not allow you to add the same plugin twice to the
collection (with the exception of UnknownPlug). You will need to edit the collection
configuration file by hand. Close the reports collection in GLI. Then open
C:\Program Files\Greenstone\collect\reports\etc\collect.cfg using WordPad. In the
list of plugins, add another PDFPlug, i.e.

plugin PDFPlug

Don’t worry about the options here — we will add these using the GLI.

Note that if you ever need to edit a collection’s collect.cfg file by hand, you must
close the collection in GLI first, otherwise the next time GLI saves the file, it will
overwrite your changes.

Open up the collection again in the Librarian Interface, and go to the Gather panel.
Make a new folder called “notext”. Right click in the collection panel and select New
folder from the menu. Change the Folder Name to notext, and click <OK>. Move
the two pdf files that have problems with html (pdf05-notext.pdf and pdf06-
weirdchars.pdf’) into this folder by drag and drop. We will set up the plugins so that
PDF files in this “notext” directory are processed differently to the other PDF files.

Switch to the Document Plugins section of the Design panel. You will see that there
are two PDFPIlug plugins in the list.

Switch to Library Systems Specialist mode, as you will need to use regular
expressions in the options.

Configure the two PDFPlug plugins so that the options look like the following:

plugin PDFPlug -convert to pagedimg jpg -process_exp "notext.*\.pdf"
plugin PDFPlug -convert to html -use sections

The paged img version must come earlier in the list than the html version. The
process_exp for the first PDFPlug will process any PDf files in the notext directory.

The second PDFPlug will process any PDF files that are not processed by the first
one.

Note that all plugins have the process_exp option, and this can be used to customize
which documents are processed by which plugin. This option is only visible in
Library Systems Specialist and Expert modes.

Change back to Librarian mode.

17. Edit the DocumentText format statement. PDF files processed as HTML will not
have images to display, so we need to make sure they get text displayed instead.

Change the first [srcicon] element in the following part with
{Or}{[srcicon],[Text]}.Le.Change

{If}{[parent:FileFormat] eq PDF, [srcicon],
{If}{[parent:FileFormat] eq PPT, [srcicon], [Text]}}

to
{If}{[parent:FileFormat] eq PDF, {Or}{[srcicon], [Text]},
{If}{[parent:FileFormat] eqg PPT, [srcicon], [Text]}}

18. Build and preview the collection. All PDF and PowerPoint documents should look
relatively nice. Try searching this collection. You will be able to locate the PDFs that
were converted to HTML (try e.g. “bibliography”), but not the ones that were
converted to images (try searching for “banana” or “METS”).

Part VI — CDS/ISIS

1. Create a new collection in the Librarian Interface called ISIS Collection. Add the
files from workshop_files\sample_isis into the collection. Click <OK> to add
ISISPlug when prompted.

2. Build and preview the collection. The default indexes, classifiers and document
display are not very useful for this data.

3. Follow the instructions given in Lecture 6 to customize the collection.

4. Improve the collection further by indexing, classifying and displaying another
metadata element of your choice.

Part VII — Your custom collection

Using any of the advanced features you have worked on in this lab, customize your own
collection.

